
Attribution/License

● Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)
● This slideset and associated source code may not be distributed

without prior written notice

1

Please do not redistribute slides/source without
prior written permission.

http://www.mshah.io

A Study of Plugin Architecture
for Supporting Extensible Software

-- in C++
with Mike Shah

11:00 - 12:00 EDT Mon, July 22, 2024

60 minutes with Q&A
Introductory/Intermediate Audience 2

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

A Study of Plugin Architecture
for Supporting Extensible Software

-- in C++
with Mike Shah

11:00 - 12:00 EDT Mon, July 22, 2024

60 minutes with Q&A
Introductory/Intermediate Audience 3

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

So this will be an
introductory software
architecture talk

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

A Study of Plugin Architecture
for Supporting Extensible Software

-- in C++
with Mike Shah

11:00 - 12:00 EDT Mon, July 22, 2024

60 minutes with Q&A
Introductory/Intermediate Audience 4

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Let’s say this advice applies when
you start running into issues of
scale -- maybe that’s 50k or 100k+
lines of code in your domain.

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

A Study of Plugin Architecture
for Supporting Extensible Software

-- in C++
with Mike Shah

11:00 - 12:00 EDT Mon, July 22, 2024

60 minutes with Q&A
Introductory/Intermediate Audience 5

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

My explicit goal today, is to introduce
you to how a plugin architecture may
be useful -- so thanks for having me,
and let’s begin!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Code and Slides for the talk

● Code Located here:
https://github.com/MikeShah/T
alks/tree/main/2024/cppnorth

● Slides posted after conference at:
○ www.mshah.io

● Live coding the examples from
this (if any) posted at:

○ www.youtube.com/c/MikeShah

6

https://github.com/MikeShah/Talks/tree/main/2024/cppnorth
https://github.com/MikeShah/Talks/tree/main/2024/cppnorth
http://www.mshah.io
http://www.youtube.com/c/MikeShah

Abstract

Talk Abstract: Building extensible software is a goal and a often a metric of good software
design. It is becoming more and more common for users to also contribute to the
development of the software that they use--especially in the domains of computer graphics
and gaming. Terms like 'modding' software have been around since at least the early 90s
when the popular game Doom allowed for users to create their own content and modify the
behavior of the program. Behind these programs there thus must be a mechanism for
allowing users to 'hook' into the main program. In this talk, I will be showing several
software developer kits including Autodesk Maya 3D (C++), Unity3D (C#), Unreal Engine
(C++), and QT Modeler(C), and present a case study of how they are designed. At the end of
the design discussion I will present how to get started building your own plugin system,
and what considerations must be taken in mind (e.g. does the application or plugin manage
resources, what should be exposed in the API, how do you embed a scripting language, and
how should you distribute your plugins). Attendees will leave the presentation with
practical knowledge on how to build software that can be extended by their user base.

7

The abstract that you read and enticed you to join me here!

Your Tour Guide for Today
Mike Shah

● Current Role: Teaching Faculty at Yale University
(Previously Teaching Faculty at Northeastern University)

○ Teach/Research: computer systems, graphics, geometry, game
engine development, and software engineering.

● Available for:
○ Contract work in Gaming/Graphics Domains

■ e.g. tool building, plugins, code review
○ Technical training (virtual or onsite) in Modern

C++, D, and topics in Performance or Graphics APIs
● Fun:

○ Guitar, running/weights, traveling, video
games, and cooking are fun to talk to me about!

8

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Your Tour Guide for Today
Mike Shah

● Current Role: Teaching Faculty at Yale University
(Previously Teaching Faculty at Northeastern University)

○ Teach/Research: computer systems, graphics, geometry, game
engine development, and software engineering.

● Available for:
○ Contract work in Gaming/Graphics Domains

■ e.g. tool building, plugins, code review
○ Technical training (virtual or onsite) in Modern

C++, D, and topics in Performance
● Fun:

○ Guitar, running/weights, traveling, video
games, and cooking are fun to talk to me about!

9

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

We will talk about some video
games today -- stay tuned!

So let’s get started!

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

The neat part of software is...

10https://news.yale.edu/2017/02/10/grace-murray-hopper-1906-1992-legacy-innovation-and-service (Pictured above: Dr. Admiral Grace Hopper)

https://news.yale.edu/2017/02/10/grace-murray-hopper-1906-1992-legacy-innovation-and-service

The neat part of software is...

11https://news.yale.edu/2017/02/10/grace-murray-hopper-1906-1992-legacy-innovation-and-service (Pictured above: Dr. Admiral Grace Hopper)

Right in front of
us!

https://news.yale.edu/2017/02/10/grace-murray-hopper-1906-1992-legacy-innovation-and-service

Software versus Hardware

● My friend and colleague Klaus
reminded me of the definition of
software in his 2020 talk from
the origin of the names:

○ ‘hardware’ being not really readily
changeable, and

○ ‘software’ being [much more] easily
modifiable.

Breaking Dependencies: The SOLID Principles - Klaus Iglberger - CppCon
2020
https://www.youtube.com/watch?v=Ntraj80qN2k

12

https://www.youtube.com/watch?v=Ntraj80qN2k

Software is easily modify

● So the neat thing for software
engineers is (relative to
hardware) it is:

○ Easier to change code over time (e.g.
add/remove features, improve
performance of an algorithm)

○ Easier to fix bugs on deployed
products

13

Breaking Dependencies: The SOLID Principles - Klaus Iglberger - CppCon
2020
https://www.youtube.com/watch?v=Ntraj80qN2k

https://www.youtube.com/watch?v=Ntraj80qN2k

Software is maybe too easy to modify (1/3)

● So the neat thing for software
engineers is (relative to
hardware) it is:

○ Easier to change code over time (e.g.
add/remove features, improve
performance of an algorithm)

○ Easier to fix bugs on deployed
products

● Careful however -- relative to
hardware:

○ Almost too easy to update software
■ We might actual add breaking

features, bugs, and other
regressions! 14

Breaking Dependencies: The SOLID Principles - Klaus Iglberger - CppCon
2020
https://www.youtube.com/watch?v=Ntraj80qN2k

https://www.youtube.com/watch?v=Ntraj80qN2k

Software is maybe too easy to modify (2/3)

● So the neat thing for software
engineers is (relative to
hardware) it is:

○ Easier to change code over time (e.g.
add/remove features, improve
performance of an algorithm)

○ Easier to fix bugs on deployed
products

● Careful however -- relative to
hardware:

○ Almost too easy to update software
■ We might actual add breaking

features, bugs. and other
regressions! 15

Breaking Dependencies: The SOLID Principles - Klaus Iglberger - CppCon
2020
https://www.youtube.com/watch?v=Ntraj80qN2k

So what we’re going to start
working on today is:

1. Develop software with a
‘solid and stable core’ (like
hardware)

2. Maintain the flexibility and
ease in which we can
extend software

https://www.youtube.com/watch?v=Ntraj80qN2k

Software is maybe too easy to modify (3/3)

● So the neat thing for software
engineers is (relative to
hardware) it is:

○ Easier to change code over time (e.g.
add/remove features, improve
performance of an algorithm)

○ Easier to fix bugs on deployed
products

● Careful however -- relative to
hardware:

○ Almost too easy to update software
■ We might actual add breaking

features, bugs. and other
regressions! 16

Breaking Dependencies: The SOLID Principles - Klaus Iglberger - CppCon
2020
https://www.youtube.com/watch?v=Ntraj80qN2k

Oh, and just to be clear --

It’s wonderful that we can
modify software easily, but we
are going to talk about
software architecture here at
scale with some examples
later -- stay with me for a bit!

https://www.youtube.com/watch?v=Ntraj80qN2k

Rewinding a Bit --
A Typical Software Cycle

17

How do we change software? (1/2)

● A typical Software Engineering workflow is
some form of:

○ Edit the code
○ Compile the code
○ Execute the Code

Edit

Compile

Execute

18

How do we change software? (2/2)

● A typical Software Engineering workflow is
some form of:

○ Edit the code
○ Compile the code
○ Execute the Code

Edit

Compile

Execute

Oh yeah -- and hopefully
in-between and during all
these steps:
● Think a bit
● Plan
● Talk judiciously with

your team
● read/study examples
● Use source control
● etc.

19

Software Challenges (especially at scale)

● So what are some of the challenges for us --
this seems relatively simple?

○ (next slide)

Edit

Compile

Execute

20

Challenge #1 - Huge Codebase

● ‘Edit’ could be a big step in a monolithic
codebase -- especially if my codebase is 100k
or 1+ million lines of code.

○ Lots to understand
■ (Do I understand more than my part?)

○ Perhaps other developers to coordinate with
○ Code may be ‘brittle’

■ i.e. programmers are afraid to touch certain parts

Edit

Compile

Execute

21

Challenge #2 - Huge Compile Times

● Perhaps that ‘compile step’ is quite large.
○ Perhaps it takes a lot of time to compile a million lines

of code (lots of code, templates, compile-time
execution, etc.)

Edit

Compile

Execute

22

Challenge #3 - Tricky to Deploy New Code

● Maybe that ‘execute’ step also is hard to get to.
○ Execute might involve redeployment:

■ To the cloud, a piece of hardware, or a system that
is already running which is less trivial.

Edit

Compile

Execute

23

Software Challenges Summary

1. Huge codebase that’s hard to understand
2. Huge compile times
3. Deploying to an already running system is hard

Edit

Compile

Execute

24

Software Challenges Summary - Reminder of our goals

1. Huge codebase that’s hard to understand
2. Huge compile times
3. Deploying to an already running system is hard

Edit

Compile

Execute

25

Reminder of our goal(s):

1. Develop software with a ‘solid and stable
core’ (like hardware)

2. Maintain flexibility and ease at which we
can extend software

Let’s get inspired and see what happens
when we achieve these two goals

26

Reminder of our goal(s):

1. Develop software with a ‘solid and stable
core’ (like hardware)

2. Maintain flexibility and ease at which we
can extend software

Modding Video Games
(A Brief History of the ‘mod’)

27

Enter the ‘mod’

28

● Video game modding (mods)
became popular in the early 90s

○ Specifically with game engines
(idTech) from id Software which
were either licensed or otherwise
modified by users/studios.

● The idea being that you only
needed to modify the assets and
gameplay code

○ The main game framework (the
game engine) took care of the low
level details of managing resources,
memory, I/O, displaying graphics,
etc.

○ Mods usually loaded as a new ‘data
file’ instead of the normal game
package

The Early Days of id Software - GDC Europe 2016
https://www.youtube.com/watch?v=E2MIpi8pIvY
https://en.wikipedia.org/wiki/Wolfenstein_3D

https://en.wikipedia.org/wiki/Video_game_modding
https://www.youtube.com/watch?v=E2MIpi8pIvY
https://en.wikipedia.org/wiki/Wolfenstein_3D

Game ‘Mods’ (A few example 1990s - early 2000s)

● Basically all of these games came with tools
(or data files) that allowed extension -- they
became a sandbox for creativity!

○ Wolfenstein 3D (1992)
○ Doom (1993)
○ Quake I, II, III (1996 - 1999)
○ Source Engine (From Valve, 1998)

■ Team Fortress (1999)
■ Counterstrike (2000)

○ Neverwinter Nights Aurora Engine (2002)
○ Warcraft 3 (2002)
○ Morrowind editor (2002)

29

Gary’s Mod - A Physics Sandbox
https://miro.medium.com/v2/resize:fit:1400/0*fwgqFJ4wo3EieSo_.jpg

Wintermaul - Warcraft 3 Tower defense
https://www.hiveworkshop.com/data/ratory-images/112/112170-e79d22c97a1faa6b4d7b9e9ddfb3ac15.jpg

https://en.wikipedia.org/wiki/Source_(game_engine)
https://miro.medium.com/v2/resize:fit:1400/0*fwgqFJ4wo3EieSo_.jpg
https://www.hiveworkshop.com/data/ratory-images/112/112170-e79d22c97a1faa6b4d7b9e9ddfb3ac15.jpg

The ‘scale’ of mods

● The Elder Scrolls V Skyrim [wiki] from
Bethesda released in 2011 powered by
the Creation Engine

○ By 2016 -- Skyrim had 40,000+ mods [source]
○ By 2024 -- Skyrim had still increased nearly

70,000 mods [source] after being 13 years old!
● The longevity of such projects and

sheer amount of projects in the
ecosystem is impressive!

30

https://www.gamesradar.com/the-forgotten-city-is-the-skyrim-mod-that-became-a-roman-time-loop-mystery-and-you-can-play-it-now/

How a Lawyer Sacrificed his Career to
Redevelop his Skyrim Mod | The
Forgotten City Documentary

https://www.youtube.com/watch?v=CS
qHTxgcXiI

https://en.wikipedia.org/wiki/The_Elder_Scrolls_V:_Skyrim
https://en.wikipedia.org/wiki/Creation_Engine
https://www.nvidia.com/en-us/geforce/news/history-of-pc-game-mods/
https://www.pcgamer.com/best-skyrim-mods/
https://www.gamesradar.com/the-forgotten-city-is-the-skyrim-mod-that-became-a-roman-time-loop-mystery-and-you-can-play-it-now/
https://www.youtube.com/watch?v=CSqHTxgcXiI
https://www.youtube.com/watch?v=CSqHTxgcXiI

Why Allow your software to be extended by users? (1/2)

1. Software reuse for you and your users
a. Note: Many cases in the game world where

these ‘users’ become developers later on!
2. Can build systems that programmers

and non-programmers can use
a. e.g. Unreal Blueprints (Visual Scripting)

require less programming to build games

31

Unreal Engines ‘Visual Scripting’
https://docs.unrealengine.com/4.27/Images/ProgrammingAndScripting/
Blueprints/QuickStart/BPQS_6_Step4.png

https://docs.unrealengine.com/4.27/Images/ProgrammingAndScripting/Blueprints/QuickStart/BPQS_6_Step4.png
https://docs.unrealengine.com/4.27/Images/ProgrammingAndScripting/Blueprints/QuickStart/BPQS_6_Step4.png

Why Allow your software to be extended by users? (2/2)

1. Economic benefits
a. license fees for your technology
b. marketplace for various extensions

2. Good karma
a. Some mods become more popular than the

actual games!
b. And this can result again in continued sales

and community building for the original
product

i. Should be a win-win for devs and users

32

https://www.unrealengine.com/marketplace/en-US/store

Defense of the Ancients (2003) is a Warcraft
3 mod that became the popular ‘DOTA’
https://media.moddb.com/images/downloads/1/166/165889/w3_featprv.jpg

https://www.unrealengine.com/marketplace/en-US/store
https://media.moddb.com/images/downloads/1/166/165889/w3_featprv.jpg

Why Not To Allow your platform to be extended by users?

1. Could expose internals that you may not want
a. Whether directly exposed in your API or indirectly by accident

2. What happens if you allow talking across programming language
boundaries?
a. i.e. interop with a language with different safety guarantees.

3. Once you have a critical mass of users, you have to be careful of
how frequently you change APIs and break code that is depended
on
a. i.e. You now need to support such features
b. i.e. Hyrum’s law (With a sufficient number of users of an API, it does not matter what

you promise in the contract: all observable behaviors of your system will be
depended on by somebody.)

33

https://www.hyrumslaw.com/

Back to our Main Goals

34

● To some degree, all of the games we looked at (from a software
perspective) must have met (to some degree) our 2 goals.

○ (As always -- in any software talk -- there are trade-offs!)

Reminder of our goal(s):

1. Develop software with a ‘solid and
stable core’ (like hardware)

2. Maintain flexibility and ease at which
we can extend software

Let’s talk about the first goal
3 Ideas of how to Modify Software

35

Reminder of our goal(s):

1. Develop software with a ‘solid and
stable core’ (like hardware)

2. Maintain flexibility and ease at which we
can extend software

3 Ideas of how to Modify Software (1/2)

36

1. Just edit the source code (Editing Code)
2. Edit source with discipline (Editing Code)
3. Live Patching (Editing Code)

3 Ideas of how to Modify Software (2/2)

37

1. Just edit the source code (Editing Code)
2. Edit source with discipline (Editing Code)
3. Live Patching (Editing Code)

Think to yourself if these strategies meet the below goal:

1. Develop software with a ‘solid and
stable core’ (like hardware)

2. Maintain flexibility and ease at which we
can extend software

Idea #1 - Just edit the source code (Editing Code)

● So idea 1 is to just literally modify
the code

○ You always have this option
○ But do we think this is a good way to get

70,000+ ‘mods’ distributed for your
product?

38

https://compote.slate.com/images/8a5bf959-9321-4a83-b960-dad11
20144ac.jpeg?width=1200&rect=1560x1040&offset=0x0

https://compote.slate.com/images/8a5bf959-9321-4a83-b960-dad1120144ac.jpeg?width=1200&rect=1560x1040&offset=0x0
https://compote.slate.com/images/8a5bf959-9321-4a83-b960-dad1120144ac.jpeg?width=1200&rect=1560x1040&offset=0x0

Idea #2 - Edit source with discipline (Editing Code)

● With careful use, we can use
programming language feature
like inheritance to extend or
otherwise override behaviors.

○ This requires your programmers and
users to understand subsystems they
work on.

○ And perhaps further discipline to
follow the perhaps the Open-Closed
Principle (from SOLID)

■ Some patterns like the ‘visitor
pattern’ may be useful,

39

C++ Visitor Design Pattern - Part 1 of 4 - Programming Paradigms
https://www.youtube.com/watch?v=9cNnh2BmTOU&t=2s&pp=ygUZbW
lrZSBzaGFoIHZpc2l0b3IgcGF0dGVybg%3D%3D

https://www.youtube.com/watch?v=9cNnh2BmTOU&t=2s&pp=ygUZbWlrZSBzaGFoIHZpc2l0b3IgcGF0dGVybg%3D%3D
https://www.youtube.com/watch?v=9cNnh2BmTOU&t=2s&pp=ygUZbWlrZSBzaGFoIHZpc2l0b3IgcGF0dGVybg%3D%3D

Idea #3 - Live Patching (Editing Code)

● Another strategy is to actually modify a binary
by live/hot/monkey patching in new code.

○ This is a bit more risky, but certainly doable.
○ BUT -- we really need to understand how the system

operates.
○ Some domains (e.g. an operating system) may require

this strategy
● Frameworks like Intel’s Pin may be of interest

○ https://www.intel.com/content/www/us/en/developer
/articles/tool/pin-a-dynamic-binary-instrumentation-t
ool.html

● However -- this probably is not the appropriate
mechanism for an easily extensible system --
we’re changing the core at the binary level!

40

https://images.unsplash.com/photo-1640552435388-a54879e72b28?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=M3wxMTc3M3wwfDF8c2VhcmNofDV8fGxpbnV4fGVufDB8fHx8MTcwMzgxMDQ3Nnww&ixlib=rb-4.0.3&q=80&w=2000

https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://images.unsplash.com/photo-1640552435388-a54879e72b28?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=M3wxMTc3M3wwfDF8c2VhcmNofDV8fGxpbnV4fGVufDB8fHx8MTcwMzgxMDQ3Nnww&ixlib=rb-4.0.3&q=80&w=2000

3 Ideas of how to Modify Software

41

1. Just edit the source code (Editing Code)
2. Edit source with discipline (Editing Code)
3. Live Patching (Editing Code)

Think to yourself if these strategies meet the below goal:

1. Develop software with a ‘solid and
stable core’ (like hardware)

2. Maintain flexibility and ease at which we
can extend software

So to answer the question:
● You can maybe have a

strong and stable
codebase -- but you need
discipline and good
abstractions if you are
going to freely modify it.
○ programming tools

constraints/contracts/
concepts/interfaces
may help

● So let’s see if we can
focus on designing
‘extensible systems’ and
controlling a bit where
new code enters.

42

Reminder of our goal(s):

1. Develop software with a ‘solid and stable
core’ (like hardware)

2. Maintain flexibility and ease at which
we can extend software

Let’s talk about the second goal
Some Ideas of how to Extend Software

4 Ideas of how to Extend Software (1/2)

43

1. Configuration Files (Data-Driven)
2. Command Driven Language (Data-Driven)
3. Interpreter/Script Language (Data-Driven)
4. Plugin System (shared libraries) (Data-Driven)

4 Ideas of how to Extend Software (2/2)

44

1. Configuration Files (Data-Driven)
2. Command Driven Language (Data-Driven)
3. Interpreter/Script Language (Data-Driven)
4. Plugin System (shared libraries) (Data-Driven)

Think to yourself if these strategies meet the below goal:

1. Develop software with a ‘solid and stable
core’ (like hardware)

2. Maintain flexibility and ease at which
we can extend software

Idea #1 - Configuration Files (Data-Driven) (1/2)

● We can make our software data-driven
using ‘configuration files’

○ In our game modding examples -- the ‘art
assets’ are an example of something
data-driven

○ Other configuration like ‘settings’ and
‘rules/constraints’ could be controlled from
configuration files

○ You can even setup different data types with
the Type Object pattern:

■ https://gameprogrammingpatterns.com/t
ype-object.html

45

https://www.youtube.com/watch?v=CAqX8YT4lHI
Read, write, and parse files(fstream, string, &
stringstream)

https://gameprogrammingpatterns.com/type-object.html
https://gameprogrammingpatterns.com/type-object.html
https://www.youtube.com/watch?v=CAqX8YT4lHI

Idea #1 - Configuration Files (Data-Driven) (2/2)

● Note: for any data-driven strategy consider:
○ Is the file loaded at build system (compile-time) or run-time?
○ If it’s ‘run-time’ you have to decide:

■ Does loading configuration files happen when the program starts?
■ Or could loading happen at an arbitrary point while the software is running?

● (i.e. user clicks a button, or system listens for changes)

46

Idea #2 - Command Driven Language (Data-Driven)

● Your ‘configuration’ files could be a
‘command-driven language’

○ Can effectively build a small Domain
Specific Language (DSL) or Virtual Machine

○ e.g.
■ Events that take place when a new

game level is setup (see top-right)
■ Image a painting application where a

script has several ‘effects’ or
‘transformations’ that happen
successively

47

A series of commands (no loops or
conditions) is executed
Game Scripting Mastery - Chapter 2

Idea #3 - Interpreter/Script Language (Data-Driven) (1/3)

● And in fact, if you do not want
to create your own little
language or interpreter, then
you could just embed a
scripting language

○ Python (boost python)
○ pybind11 [example videos]
○ lua
○ ruby
○ C#, etc.
○ QuakeC [wiki]

● You’ll need to decide how much
of your API to otherwise expose

48

Lua is a popular scripting language for games in general -- pictured
is a lua script for World of Warcraft
https://wowpedia.fandom.com/wiki/Lua

https://www.youtube.com/playlist?list=PLvv0ScY6vfd90tV5g_wzbkfCZ8iR9qSMK
https://en.wikipedia.org/wiki/QuakeC
https://wowpedia.fandom.com/wiki/Lua

Idea #3 - Interpreter/Script Language (Data-Driven) (2/3)

● Here’s an example with
pybind11, which wraps a
‘component’ class for use
in a shared library

● In the next slide -- I’ll
show using the shared
library within Python

49

Idea #3 - Interpreter/Script Language (Data-Driven) (3/3)

● On the bottom I have the
compilation command for
building a library with pybind11

● On the right using that library
within Python

○ Note: We can even embed Python
within C++, then import our library
there.

○ Now users are simply writing Python
scripts using our exposed API to
change behaviors :)

50
Full example video of building a Python plugin
https://www.youtube.com/watch?v=XSKGSnMmTNw&list=PLvv0ScY6vfd90tV5g_wzbkfCZ8iR9qSMK&index=6

https://www.youtube.com/watch?v=XSKGSnMmTNw&list=PLvv0ScY6vfd90tV5g_wzbkfCZ8iR9qSMK&index=6

Idea #4 - Plugin System (shared libraries) (Data-Driven)

● We can actually compile our code
as a library -- now we get the
benefit of speed of compiled C++!

■ Then we load that library at compile
or run-time

■ Note: In this talk I’ll focus on
run-time loading

○ This allows us to work in our native
language (or any language with a C
Foreign Function Interface)

● Allowing code extension by plugins
does require us to now create a
plugin interface!

51

The idea here is users write separate ‘Plugins’ from
whatever API we expose. A plugin manager will
handle loading our code into our systems.

API Design for C++ Ch. 12

4 Ideas of how to Extend Software

52

1. Configuration Files (Data-Driven)
2. Command Driven Language (Data-Driven)
3. Interpreter/Script Language (Data-Driven)
4. Plugin System (shared libraries) (Data-Driven)

Think to yourself if these strategies meet the below goal:

1. Develop software with a ‘solid and stable
core’ (like hardware)

2. Maintain flexibility and ease at which
we can extend software

So to answer the
question:
● All of these options

are ‘data-driven’ and
extend our system in
some way.
○ They naturally

require us to
have some ‘core’
to build an API
around

● The plugin system
may be the easiest
solution for allowing
anyone to hook into
our system once
setup.

One Solution -- Plugin Architecture
 -- allow for extension while addressing code scale issues

53

Challenges

1. Huge codebase that’s hard to understand
2. Huge compile times
3. Deploying to an already running system is

hard

Objectives/Goals

1. Develop software with a ‘solid and stable
core’ (like hardware)

2. Maintain flexibility and ease at which we
can extend software

Plugin Architecture (1/2)

54

● The software architecture for
our system will look something
like this

● Our ‘Core API’ is relatively firm
○ Users are not really changing

source in the Core API to change
behaviors

■ Instead they’re building
features through the exposed
core API as plugins

Core API

Plugin
Manager

Plugin 1

Plugin 2

Plugin ...

System 1

System 2

System N

math.hpp

physics.hpp

Widget.hpp

(Other
libraries)

Plugin Architecture (2/2)

55

● We almost want to think of this
‘Core API’ as a black box -- like
a ‘hardened software’ that is
changed by trusted engineers

○ Thus we extend our system
through ‘plugins’

● Note:
○ We do have two competing

stakeholders (plugin developers
and core engineers) --

■ ‘contracts’ in the API or
otherwise a stable
API/Versioning system
become important!

Core API

Plugin
Manager

Plugin 1

Plugin 2

Plugin ...

System 1

System 2

System N

math.hpp

physics.hpp

Widget.hpp

(Other
libraries)

Plugin Manager mechanism

56

● On Linux the mechanism
is the dlopen function for
opening a library.

○ dlsym specifically reads in
the function names of a
loaded library

● Note: Your plugin manager
needs some way to read
the functions exported
(e.g. reading a file of
exported symbol names or
otherwise ‘registering
them’)

Note: On windows there are equivalent functions to dl*
functions like: LoadLibraryA and GetProcAddress

Plugin Architecture Review

57

● So the plugin architecture seems to
hit our goals!

● We can focus on building, testing,
and compiling ‘smaller’ plugin
components:

○ We can localize complexity within our
plugins

○ Avoid recompiling the entire codebase
(only the plugins if that’s where
changes are made)

○ And even load (or reload) plugins to a
running system

● (Or -- if your on the ‘core side’ --
you can just focus on building the
infrastructure that others plug into
-- either way, less code to manage)

Core API

Plugin
Manager

Plugin 1

Plugin 2

Plugin ...

System 1

System 2

System N

math.hpp

physics.hpp

Widget.hpp

(Other
libraries)

Example Enabling of a Plugin System - Manager

58

● Have a single
manager for
managing plugins

○ This is perhaps a use
case for a Singleton
Design

○ Note: You may
additionally consider
concurrency and error
logging as needed.

Single Entry point and manager of all plugins
https://www.youtube.com/watch?v=eLAvry56vLU

https://www.youtube.com/watch?v=eLAvry56vLU

Example Enabling of a Plugin System - Interfaces

59

● Add whatever
functionality that you
think you need

○ e.g. ‘Load’, ‘Update’, ‘Render’
● Since we’re dynamically

loading the module, we
rely on run-time
polymorphism for
functionality

○ Thus -- the ‘virtual’ keyword

Example of a Custom Plugin

60

● Example implementation
of a custom plugin
implementing the IPlugin
interface

○ Observe the ‘C’ based API
that exposes out the factory
functions to ‘create’ and
‘destroy’ a new instance

○ Note: Most of your ‘factory’
functions need to be ‘extern
C’ to avoid mangling.

■ Windows and other
platforms may need to
handle dllexport

Case Studies
A Brief Look at a few Real World Systems

61

Maya

62

● Maya is a 3D modeling and
animation package used in
games and motion pictures

● Just looking at the user
interface, it’s screaming at me
for a plugin architecture

○ i.e. Every button can be a plugin
that performs some unique action Image from:

https://www.aptech.ae/uploads/thumbnails/course_thumbnails/course_image_default_27.jpg

Maya is now owned by AutoDesk -- learn more of
its history here:
https://en.wikipedia.org/wiki/Wavefront_Technologi
es#Acquisitions_and_mergers

https://www.aptech.ae/uploads/thumbnails/course_thumbnails/course_image_default_27.jpg
https://en.wikipedia.org/wiki/Wavefront_Technologies#Acquisitions_and_mergers
https://en.wikipedia.org/wiki/Wavefront_Technologies#Acquisitions_and_mergers

Maya - Hello World Plugin (1/3)

63

● We can observe this follows a
very similar pattern to our
plugin architecture previously
explained

○ (next slide)

Maya Docs:
https://help.autodesk.com/view/MAYAUL/2024/ENU/?guid=Maya_SDK_A_First_Plugin_cpp_HelloWorldComplete_html

https://help.autodesk.com/view/MAYAUL/2024/ENU/?guid=Maya_SDK_A_First_Plugin_cpp_HelloWorldComplete_html

Maya - Hello World Plugin (2/3)

64

● We can observe this follows a
very similar pattern to our
plugin architecture previously
explained

○ Here is our new command
‘helloWorld’ that inherits from a
base class.

Maya Docs:
https://help.autodesk.com/view/MAYAUL/2024/ENU/?guid=Maya_SDK_A_First_Plugin_cpp_HelloWorldComplete_html

https://help.autodesk.com/view/MAYAUL/2024/ENU/?guid=Maya_SDK_A_First_Plugin_cpp_HelloWorldComplete_html

Maya - Hello World Plugin (3/3)

65

● We can observe this follows a
very similar pattern to our
plugin architecture previously
explained

○ Below observe are our set of
creator function and set of
functions for initializing the plugin
in our plugin manager

Maya Docs:
https://help.autodesk.com/view/MAYAUL/2024/ENU/?guid=Maya_SDK_A_First_Plugin_cpp_HelloWorldComplete_html

https://help.autodesk.com/view/MAYAUL/2024/ENU/?guid=Maya_SDK_A_First_Plugin_cpp_HelloWorldComplete_html

Maya - Errors

66

● We haven’t talked too much
about errors in plugins -- but
observe in Maya there is an
MStatus returned from actions

○ We need some way to query in
both our Core, and our plugin if
the event succeeds, so this is one
strategy

Maya - Hello World Plugin

67

● From my own experience I can tell you in
Maya this works well -- Maya also
provides many plugins in this manner
[list]

○ Effectively creating new tools off the shelf is
relatively easy

● Plugins can be reloaded through a simple
dialog once created [2025 docs on plugin manager]

https://help.autodesk.com/view/MAYAUL/2025/ENU/?guid=GUID-DF9366D9-E24B-4A08-88F1-8EE1B78A52F9
https://help.autodesk.com/view/MAYAUL/2025/ENU/?guid=GUID-2CF7D90B-EF10-40D1-9129-9D401CCAB952

Moving to Unreal Engine

68

● A few different types of plugins (for C++
and blueprint) depending on which ‘core
system’ you are modifying

● Unreal engine guides you through what
type of plugin you’d like to make

○ https://docs.unrealengine.com/4.27/en-US/Pro
ductionPipelines/Plugins/

○ https://dev.epicgames.com/community/learnin
g/tutorials/qz93/unreal-engine-building-plugin
s

https://docs.unrealengine.com/4.27/en-US/ProductionPipelines/Plugins/
https://docs.unrealengine.com/4.27/en-US/ProductionPipelines/Plugins/
https://dev.epicgames.com/community/learning/tutorials/qz93/unreal-engine-building-plugins
https://dev.epicgames.com/community/learning/tutorials/qz93/unreal-engine-building-plugins
https://dev.epicgames.com/community/learning/tutorials/qz93/unreal-engine-building-plugins

Unreal Engine

69

● Hmm -- I’m seeing a pattern
here

○ Some functions for
‘startup/shutdown’

○ Some functions for something that
adheres to the plugin interface

■ (i.e. PluginButtonClicked in
this example)

Unreal Engine

70

● Typically additional metadata attached with
each plugin for users to know about plugin.

QT Modeler

71

● A terrain modeler with a ‘C’
based API

○ Effectively the plugins were
distributed as .h files with a list of
.c functions and structs that were
publicly available

○ Developer releases new binary
exposing the ‘plugins’ available.

https://appliedimagery.com/features/

https://appliedimagery.com/features/

Wrap Up and More Resources

72

Localize Complexity

● Plugin-based architectures can help
‘localize complexity’

○ Note: The phrase ‘localize complexity’ was
drilled into my head after reading ‘The Rules
of Programming’ Book by Chris Zimmerman

■ I recommend this book

73

Summary

74

● Today we talked about why a plugin architecture might solve
software engineering problems at scale

○ There are benefits otherwise to software being open to modification to the wider
world (mods to games or tools as an example)

● I hope you can think about otherwise breaking your software into
chunks

○ The first part should really be ‘core systems’ -- hardened, with specific contracts
for functionality like hardware

○ The second part ‘open for extension’ to help manage complexity and enable
developers

More Thoughts (if time left after Q&A) (1/2)

● Q: What if my (or someone else's) plugin leaks memory?
○ A: Tools like valgrind on linux (and possibly leaks on Mac), and other memory

sanitizers may likely help here
● Q: What if my plugin crashes?

○ A: It’s probably ideal ‘not’ to crash the rest of the system -- you may consider a
‘service locator’ pattern for your plugin system if applicable to have ‘nullptr’
versions available.

■ If you otherwise have a crash in your plugin that brings the whole system
down, consider the cause and if that can be mitigated (e.g. resources only
handed out by core system and plugin interface can only request them).

● Q: What if I compiled my code with some ‘new’ or ‘old’ version of a
compiler, or something that’s not ABI compatible?

○ A: Hmm, probably just need to update your compiler and try to build with the
same compiler.

75

https://gameprogrammingpatterns.com/service-locator.html

More Thoughts (if time left after Q&A) (2/2)

● Q: What if I want a ‘C’ based interface from my Object-Oriented C++
○ A: That’s probably a good idea.

■ Try to avoid ‘C++’ specific things that are not in C (e.g. exceptions, use const
char* instead of std::string, etc.)

● Q: Should I use a plugin system or embed a scripting language?
○ A: You can actually use both if you need

■ Just make sure to load your plugins first before scripts are run, then you
scripts could call into your plugins as well.

● Q: I don’t like dynamically loaded libraries because of run-time
overhead or load-time overhead

○ A: It’s possible you lose some performance from not having whole program
optimizations -- measure first.

■ If you are using plugins for ‘critical core systems’ (and own the source)
consider making that functionality part of the core.

○ A: As far as loading

76

A Study of Plugin Architecture
for Supporting Extensible Software

-- in C++
with Mike Shah

13:00 - 14:00 EDT Mon, July 22, 2024

60 minutes with Q&A
Introductory/Intermediate Audience 77

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Thank you
C++ North!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Extra

78

Audience Question (1/2)

● What do folks think of this?

79

Hover over title: Someday ImageMagick will
finally break for good and we'll have a long
period of scrambling as we try to reassemble
civilization from the rubble.

https://imgs.xkcd.com/comics/dependency.png

https://imgs.xkcd.com/comics/dependency.png

